Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation
نویسندگان
چکیده
Calcium (Ca(2+)) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+) and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+) binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+) had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+) at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca(2+) is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+) alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+) to eDNA thereby mediating bacterial aggregation and biofilm formation.
منابع مشابه
Identification of Factors Associated with Biofilm Formation Ability in the Clinical Isolates of Helicobacter pylori
Background: A few reports confirm the ability of Helicobacter pylori to form biofilm. However, conclusive data do not exist concerning the factors that favor this ability.Objectives: Evaluation of the factors associated with the biofilm formation ability of H. pylori including bacterial, physical and chemical, and environmental factors was the research’s aim.Materials and Methods: H...
متن کاملExtracellular DNA Plays an Important Structural Role in the Biofilm of the Plastic Degrading Actinomycete Rhodo-coccus ruber
Biofilms, the preferred bacterial mode of living and survival, are employed by most microorganisms—which tend to attach to surfaces—to gain physical support, increase nutrient utilization and availability, and augment their resistance against anti-bacterial agents. Rhodococcus ruber (C208) has been shown to form a dense biofilm on polyethylene surfaces while degrading them. Bacterial biofilms c...
متن کاملCalcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus.
Bap (biofilm-associated protein) is a 254-kDa staphylococcal surface protein implicated in formation of biofilms by staphylococci isolated from chronic mastitis infections. The presence of potential EF-hand motifs in the amino acid sequence of Bap prompted us to investigate the effect of calcium on the multicellular behavior of Bap-expressing staphylococci. We found that addition of millimolar ...
متن کاملEffect of Benzalkonium Chloride on Biofilm of Bacteria Causing Nosocomial Infectionstions
ABSTRACT Background and Objective: Biofilms are community of bacteria that attach to inanimate surfaces or living tissues via production of extracellular polymers and exopolysaccharide matrix. Microbial biofilms on various surfaces of the hospital environment are considered as a reservoir of infection spread. The present study aimed to evalu...
متن کاملIdentification of New Factors Modulating Adhesion Abilities of the Pioneer Commensal Bacterium Streptococcus salivarius
Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014